Loss of p27Kip1 expression in high grade human prostate adenocarcinoma

ABSTRACT

p27Kip1 has been hypothesized to play a major role in carcinogenesis. Most of the published data reported that loss of p27Kip1 expression was strongly associated with development and progression of tumour. The purpose of this study was to analyze p27Kip1 expression in normal, benign and malignant prostate cancer tissues and their association with the clinicopathological parameters. The expression of p27Kip1 was evaluated by an immunohistochemistry method. p27Kip1 expression was significantly higher in normal and benign prostate tissues (P<0.01). In contrast, some malignant tissues had no p27Kip1 expression and most had weak p27Kip1 expression. p27Kip1 expression was found to be decreased significantly with increasing Gleason scores (P=0.003). Most of prostate adenocarcinomas (PCa) with Gleason 8 and 9 showed loss of p27Kip1 expression. The expression was also positively correlated with prostate specific antigen level and age in PCa group (P=0.003 and 0.043 respectively), whereas no association was found between the p27Kip1 expression with tumour amount and age in benign prostatic hyperplasia group. This study suggests that loss of p27Kip1 expression is essential during development and progression of prostate cancer.

Key words: carcinogenesis, prostate adenocarcinoma (PCa), benign prostatic hyperplasia (BPH), p27Kip1, immunohistochemistry

Introduction

Prostate cancer is one of the most common cancers that occur in Malaysian male population and was ranked fourth among all human cancers prevalence. Prostate adenocarcinoma is the most common type of prostate cancer (National Cancer Registry, 2007) and its significance is related not only to the mortality, but also to its association to the high morbidity rate. Furthermore, there is no standard treatment that effectively cures this disease (Valicenti et al., 2000). Management of cancer patients including prostate cancer highly depends on accurate assessment of the biological potential of the tumour. Although the current assessment technique, which is focused on stage, grade and prostate specific antigen (PSA), is widely used, unfortunately, it is inadequate to determine the best treatment options to the patients. More precise marker is needed to aid treatment decisions for prostate cancer patients.

It has been postulated that loss of negative cell cycle regulator might have a role in tumour development and progression (Sherr, 1996). One example of cell cycle regulator is p27Kip1. Loss of p27Kip1 expression was seen in many human carcinomas like colorectal, mammary, esophageal, pulmonary and gastric (Loda et al., 1997; Tan et al., 1997; Catzavelos et al., 1997; Porter et al., 1997; Mori et al., 1997; Esposito et al., 1997; Singh et al., 1998). In addition, loss of p27Kip1 expression was also found to be a negative prognostic marker in prostate carcinoma (Tsihlias et al., 1998; Yang et al., 1998; Cheville et al., 1998; Cardo et al., 1998; Cote et al., 1998). p27Kip1 is actually a protein that regulates the cell cycle transition from G1 to S phase by binding to and inhibiting several cyclin dependend kinase (CDK) protein complexes in normal cells. Increased p27Kip1 protein expression levels serves as a barrier for
progression to S phase and signal exit from cell cycle, thus, block the cell proliferations (Polyak et al., 1994). Lower levels of p27Kip1 expression also could predict recurrent and poor disease-free survival in prostate cancer and is associated with other prognostic factors including higher tumour grade, positive surgical margins, seminal vesicle involvement, and lymph node metastasis (Dong, 2006).

In the present study, we conducted an immunohistochemical analysis to evaluate p27Kip1 protein expression in normal, BPH and prostate adenocarcinoma. The possible association between p27Kip1 expressions with clinicopathological parameters has also been assessed.

Materials and Methods

Samples

263 paraffin embedded specimens collected between 2006 and 2008 were obtained from the archive of Pathology Department in Hospital Kuala Lumpur. The patients’ age ranged from 28 to 91 years (mean age, 64.54 ± 10.8 years). The specimens were composed of 63 normal prostate, 100 BPH and 100 PCa tissues. All the PCa cases were classified according to the Gleason grading system and were further divided into low score group (Gleason 6 to 7) and high score group (Gleason 8 to 9). The tumour volumes were classified as low amount, ≤ 5% and high amount, > 5%. Pretreatment PSA were grouped as either ≤ 4.0 ng/ml or > 4.0 ng/ml. Ethical approvals were obtained from the ethical committee of University Putra Malaysia (UPM), National Medical Research Registration (NMRR) and Hospital Kuala Lumpur (HKL) prior to commencement of the study.

Immunohistochemistry

p27Kip1 immunohistochemical staining was done using the DAKO REAL EnVision (Dako, Ca, USA). A total of 263 formalin-fixed paraffin embedded tissues samples were processed. The paraffin blocks were cut at 4 µm, mounted onto poly-L-lysine glass slides and dried overnight at room temperature. Sections were dewaxed with absolute xylene and rehydrated with grading alcohol and lastly run under tap water. The sections then were heated in citrate buffer (0.01 M, pH 6.0) in 1000 W microwave oven for 10 minutes high temperature (98°C) followed by 10 minutes medium low temperature (72°C). After cooled down at room temperature for 20 minutes, endogenous peroxidase activity was inactivated in 3 % H2O2 for 5 minutes. Then, the sections were rinse twice with Tris Buffered Saline (TBS) for 5 minutes. Monoclonal mouse anti-human p27Kip1 (clone SX53G8, Dako, Ca, USA) were used at 1:50 dilutions in antibody diluents (Dako, Ca, USA). Sections were incubated with primary antibody for 1 hour at room temperature. After 1 hour, all sections were rinsed twice with TBS for 5 minutes before incubated with secondary antibody (Dako, Ca, USA) for 30 minutes. The sections were rinsed twice with TBS for 5 minutes. Diaminobenzidine (Dako, Ca, USA) was used as a chromogen to verify immunoreactions and hematoxylin was used for counterstaining. Negative control was processed simultaneously from the same samples and protocol but primary antibody step was replaced by antibody diluents. Colon adenocarcinoma sections were used as a positive control because this tissue was well known to express p27Kip1.

p27Kip1 expression analysis

p27Kip1 expression was evaluated by two blinded pathologists. All nuclear staining, either weak or strong were considered as a positive and no staining detected was considered as a negative. The expressions were scored from 0 to 4+ depending on the staining intensity. Quantification of p27Kip1 immunohistochemical expression score was done using five randomly ocular fields under 200x microscope magnification, where 100 cells were counted in each field. The extent and intensity of positive tumour cells were graded as 0, none; 1+, weak; 2+, moderate; 3+, strong; and 4+, very strong (Yoshimura et al., 2000). All the slides were evaluated without any knowledge of the patient’s clinical data and histopathological reports.

Statistical analysis

Data were recorded and statistically analyzed using SPSS for Windows Version 17.0 (Chicago, USA) and the statistical results were considered significant for P values less than 0.05. Mann-Whitney test was used to compare the expression of p27Kip1 between normal, benign, and malignant prostate tissues. The Chi-square test was used to determine the association of clinicopathological variables and p27Kip1 expressions.

Results

P27Kip1 was expressed in varying degrees of intensity by all the normal, BPH and PCa tissues. In this study, most of the immunoreactivity was detected in the nucleus of the epithelial cells surrounding the acini and occasionally in the stromal cells. In normal prostate tissues, the level and intensity of p27Kip1 staining were uniformly high and the
staining was concentrated within the nucleus but diffused cytoplasmic staining was also observed. 62 of 63 (98.4%) normal prostate tissues strongly expressed p27Kip1 as shown in Figure 1A and Table 1. There was no negative or weak staining observed in the normal prostate tissues. Similar staining pattern was seen in BPH, where p27Kip1 was strongly expressed in 77 of 100 (77%) (Figure 1B). In contrast, only 36 (36%) and 17 (17%) of PCa cases showed strong and moderate p27Kip1 expressions respectively. The remaining 22 (22%) of PCa showed weak expressions and 25 (25%) were negative. Low and undetectable p27Kip1 expressions were observed in the majority of high grade PCa tissues (Figure 1 D-F).

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{p27Kip1 expressions in the nuclei of the acinar epithelial cells of the normal prostate, BPH, and PCa. A: Normal prostate shows very strong p27Kip1 staining. B: BPH shows strong p27Kip1 staining. C: PCa Gleason 6 (3+3) shows moderate to strong p27Kip1 staining. D: PCa Gleason 7 (3+4) shows negative to weak p27Kip1 staining. E: PCa Gleason 8 (4+4) shows negative p27Kip1 staining. F: PCa Gleason 9 (4+5) shows negative p27Kip1 staining. All samples were counterstained with hematoxylin. Original magnification is x200.}
\end{figure}
Table 1. \(p27^{Kip1}\) expression in the normal prostate, BPH, and PCa

<table>
<thead>
<tr>
<th>Tissue</th>
<th>0</th>
<th>1+</th>
<th>2+</th>
<th>3+</th>
<th>4+</th>
<th>Total</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1 (1.6%)</td>
<td>27 (42.9%)</td>
<td>35 (55.5%)</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>BPH</td>
<td>3 (3.0%)</td>
<td>4 (4.0%)</td>
<td>16 (16.0%)</td>
<td>60 (60.0%)</td>
<td>17 (17.0%)</td>
<td>100</td>
<td>0.000*</td>
</tr>
<tr>
<td>PCA</td>
<td>25 (25.0%)</td>
<td>22 (22.0%)</td>
<td>17 (17.0%)</td>
<td>26 (26.0%)</td>
<td>10 (10.0%)</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

* The difference of \(p27^{Kip1}\) expressions between groups was significant at \(P<0.05\).

Table 2. Correlation between \(p27^{Kip1}\) expressions with the clinicopathological parameters

<table>
<thead>
<tr>
<th>Clinicopathological parameter</th>
<th>(p27^{Kip1}) score</th>
<th>Total</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-2 (Low)</td>
<td>3-4 (High)</td>
<td></td>
</tr>
<tr>
<td>Patient’s age in BPH (mean = 68.13±7.42)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤68</td>
<td>10</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>>68</td>
<td>13</td>
<td>47</td>
<td>60</td>
</tr>
<tr>
<td>Patient’s age in PCa (mean = 66.78±6.23)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤66</td>
<td>22</td>
<td>18</td>
<td>40</td>
</tr>
<tr>
<td>>66</td>
<td>42</td>
<td>18</td>
<td>60</td>
</tr>
<tr>
<td>PSA level in PCa (ng/ml)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤4.0</td>
<td>12</td>
<td>17</td>
<td>29</td>
</tr>
<tr>
<td>>4.0</td>
<td>52</td>
<td>19</td>
<td>71</td>
</tr>
<tr>
<td>Gleason score (tumour stage)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤7</td>
<td>41</td>
<td>33</td>
<td>74</td>
</tr>
<tr>
<td>>7</td>
<td>23</td>
<td>3</td>
<td>26</td>
</tr>
<tr>
<td>Tumour amount (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤5</td>
<td>18</td>
<td>17</td>
<td>35</td>
</tr>
<tr>
<td>>5</td>
<td>46</td>
<td>19</td>
<td>65</td>
</tr>
</tbody>
</table>

The association between \(p27^{Kip1}\) expressions and the clinicopathological parameters was significant at \(P<0.05\).

Discussion

\(p27^{Kip1}\) down-regulation has been postulated as a key event, which determination can be a strong prognostic marker, or can be useful for differential diagnosis in several tumour models. In this study, a significant down-regulation of \(p27^{Kip1}\) protein expressions was detected in more than half of the malignant cases compared to the benign and normal prostate tissues. In accordance with other studies, a significant loss or down-regulation of \(p27^{Kip1}\) expressions was widely found in PCa and the protein was significantly higher in BPH and normal prostate (Guo et al., 1997; Zheng et al., 2004; Nikloveshivili et al., 2008). Our findings clearly showed high \(p27^{Kip1}\) expressions in the normal prostate and BPH tissue. Only a small percentage (10%) of the prostate tumour tissues expressed high \(p27^{Kip1}\).
The immunohistochemical analysis showed that the higher Gleason score had the greater total loss of p27Kipl expression (P=0.003). Gleason 9 cancer cells were totally negative for p27Kipl staining. This finding was in agreement with the previous studies as p27Kipl expression was reported to be either absent or reduced in high grade prostate cancer (Guo et al., 1997; Tsilhas et al., 1998; Cheville et al., 1998; Erdamar et al., 1999; Dreher et al., 2004). This indicates that p27Kipl expression decreases when the initial steps of malignant transformation take place and suggested that when the neoplasm reaches the invasive stage, down-regulation is either maintained or increased. In addition, p38 encoded by Jab1 gene interacts specifically with p27Kipl and over-expression of p38 can result in translocation of p27Kipl from the nucleus to the cytoplasm, causing a decreased level of p27Kipl in the cell by inducing its degradation through the ubiquitin/proteasome pathway (Pagano et al., 1995). Therefore, p38 acts as a negative regulator to p27Kipl, and their specific binding may explain the regulation of cell cycle dependent proteolytic machinery and the selection of key cell cycle regulators for degradation (Tomoda et al., 1999).

Chi-squared analysis was used to determine the association between p27Kipl expression and the clinicopathological parameters. PSA level in PCa patients (P=0.003), Gleason score (P=0.003) and patient’s age in PCa (P=0.043) correlated with low p27Kipl expressions. Low expression of p27Kipl associated with elevated PSA level, increasing Gleason score and increasing age in PCa patients were similar with the study conducted by Nikoleishvili et al. (2008) and Halvorsen et al. (2003). Tumour amount (P=0.055) and patient’s age in BPH (P=0.287) does not correlate with the expression of the p27Kipl protein. Halvorsen et al. (2003) also reported that p27Kipl expression was of borderline significant (P=0.054) associated with tumour amount as similar to this study. This result may be due to different methodologies, sample size, and cut points used to define p27Kipl expression in this study as compared to other studies (Drobnjak et al., 2003).

p27Kipl is rarely mutated in human tumours including localized prostate carcinoma, however the homozygous deletion involving p27Kipl locus or loss of p27Kipl expression raised the possibility that genetic alteration of this gene may play an important role in prostate carcinoma (Kibel et al., 2003). Guo et al. (1997) found that reduced p27Kipl expression correlated to high proliferative index and tumour grade. They also found that 4 of 5 metastatic samples demonstrated decreased staining intensity. Cordon-Cardo et al. (1998) demonstrated low expression of p27Kipl in 83% of metastatic samples. Other studies found that decreased p27Kipl expression does not only correlate with decreased disease-free survival, but also overall survival (Cote et al., 1998). In addition, Cheville et al. (1998) found that decreased p27Kipl expression correlated with adverse pathological features. Besides that, animal based studies demonstrated that loss of p27Kipl correlated with loss of Nkx3-1 in mouse prostate carcinogenesis (Gary et al., 2004). Although genetic alteration of CDK inhibitor in prostate carcinoma are rare, but it still occur in certain cases because translational control is primarily responsible for the regulation of p27Kipl during cell cycle progression in response to TGF-β (Hengst & Reed, 1996). Tomoda et al. (1999) reported substitution of glycine for valine in p27Kipl polymorphism, causing p38ab1 to promote the phosphorylation and cytoplasmic translocation of p27Kipl for its subsequent degradation in the cytoplasm, therefore lower the level of p27Kipl in the nucleus. Kibel & Isaacs (2000) also conclude that p27Kipl is the strongest candidate as a biomarker. They further mentioned that increased p27Kipl expression appears to correlate with improved pathological features and disease-free survival.

In addition, several functions have been described to a p27Kipl protein, but loss of its expression is thought to be tumourigenic and may lead to tumour progression. Other than those functions, p27Kipl is also involved in apoptosis promotion, regulation of drugs resistance in solid tumours and have protective role in inflammatory injury (Ponce-Castaneda et al., 1995). The fact that loss of p27Kipl expressions in mice significantly affects tumour progression, in conjunction with the observation that its protein level is reduced in human tumour suggests that restoring p27Kipl may be beneficial in prostate cancer therapy (Blain et al., 2003).

Conclusion

In conclusion, we suggest that p27Kipl might have a significant role in prostate cancer development and progression. There are powerful arguments and suggestions that p27Kipl should be evaluated further as one of the potential therapeutic targets for prostate cancer or other types of cancer in Malaysia. Additional studies are required to examine the potential use of p27Kipl as a prognostic marker to strengthen the evidences for better aggressive screening, prophylaxis, and treatment of prostate cancer.
Acknowledgement

We are grateful to the Ministry of Higher Education who funded this study under FRGS scheme (vote: 5523327). We thank the Directory General of Health Malaysia for allowing us to conduct this study and Hospital Kuala Lumpur for providing us with samples.

References

